
Installation Guide
Release 10.4.beta4

The Sage Development Team

Apr 28, 2024

CONTENTS

1 macOS 3

2 Windows 5

3 Linux 7

4 In the cloud 9
4.1 Linux Package Managers . 9
4.2 Install from Pre-Built Binaries . 9
4.3 Install from conda-forge . 10
4.4 Install from Source Code . 13
4.5 Launching SageMath . 31
4.6 Troubleshooting . 35

Index 37

i

ii

Installation Guide, Release 10.4.beta4

If you are reading this manual at https://doc.sagemath.org/, note that it was built at the time the most recent stable release
of SageMath was made.

More up-to-date information and details regarding supported platforms may have become available afterwards and can
be found in the section “Availability and installation help” of the release tour for each SageMath release.

Where would you like to run SageMath? Pick one of the following sections.

CONTENTS 1

https://doc.sagemath.org/
https://wiki.sagemath.org/ReleaseTours

Installation Guide, Release 10.4.beta4

2 CONTENTS

CHAPTER

ONE

MACOS

• Do you want to do SageMath development?

– Yes, development:

Obtain the SageMath sources via git as described in The Sage Developer’s Guide.

∗ Then build SageMath from source as described in section Install from Source Code.

∗ Alternatively, follow the instructions in section Using conda to provide all dependencies for the Sage li-
brary; these describe an experimental method that gets all required packages, including Python packages,
from conda-forge.

– No development:

∗ Install the binary build of SageMath from the 3-manifolds project. It is a signed and notarized app,
which works for macOS 10.12 and newer. It is completely self-contained and provides the standard
Sage distribution together with many optional packages. Additional optional Python packages can be
installed with the %pip magic command and will go into your ~/.sage directory.

∗ Alternatively, install SageMath from the conda-forge project, as described in section Install from
conda-forge.

∗ Alternatively, build SageMath from source as described in section Install from Source Code.

3

https://doc.sagemath.org/html/en/developer/walkthrough.html#chapter-walkthrough
https://github.com/3-manifolds/Sage_macOS/releases
https://conda-forge.org/

Installation Guide, Release 10.4.beta4

4 Chapter 1. macOS

CHAPTER

TWO

WINDOWS

• Do you want to do SageMath development?

– Yes, development:

Enable Windows Subsystem for Linux (WSL) and install Ubuntu as follows.

∗ Make sure that hardware-assisted virtualization is enabled in the EFI or BIOS of your system. If in doubt,
refer to your system’s documentation for instructions on how to do this.

∗ Run the WSL install command as administrator. This will install Ubuntu Linux.

Note that the basic instructions in the linked article apply to up-to-date installations of Windows 10 and
11, but there are also links to the procedures for older builds of Windows 10.

∗ If you had installedWSL previously or installed it using different instructions, verify that you are running
WSL 2.

∗ Set up your Linux username and password. Do not include any spaces in your username.

∗ If your computer has less than 10GB of RAM, change the WSL settings to make at least 5GB of RAM
available to WSL.

Start Ubuntu from the Start menu. Then follow the instructions for development on Linux below.

– No development:

Enable Windows Subsystem for Linux (WSL) and install Ubuntu as follows.

∗ Make sure that hardware-assisted virtualization is enabled in the EFI or BIOS of your system. If in doubt,
refer to your system’s documentation for instructions on how to do this.

∗ Run the WSL install command as administrator. This will install Ubuntu Linux.

Note that the basic instructions in the linked article apply to up-to-date installations of Windows 10 and
11, but there are also links to the procedures for older builds of Windows 10.

∗ If you had installedWSL previously or installed it using different instructions, verify that you are running
WSL 2.

∗ Set up your Linux username and password. Do not include any spaces in your username.

∗ If your computer has less than 8GB of RAM, change the WSL settings to make at least 4GB of RAM
available to WSL.

Start Ubuntu from the Start menu, and type the following commands to install Sage from conda-forge. (The
$ represents the command line prompt, don’t type it!) The second step will ask a few questions, and you may
need to hit Enter to confirm or type yes and then hit Enter.

5

https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#get-started
https://learn.microsoft.com/en-us/windows/wsl/install#check-which-version-of-wsl-you-are-running
https://learn.microsoft.com/en-us/windows/wsl/install#check-which-version-of-wsl-you-are-running
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#set-up-your-linux-username-and-password
https://learn.microsoft.com/en-us/windows/wsl/wsl-config#main-wsl-settings
https://learn.microsoft.com/en-us/windows/wsl/
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#get-started
https://learn.microsoft.com/en-us/windows/wsl/install#check-which-version-of-wsl-you-are-running
https://learn.microsoft.com/en-us/windows/wsl/install#check-which-version-of-wsl-you-are-running
https://learn.microsoft.com/en-us/windows/wsl/setup/environment#set-up-your-linux-username-and-password
https://learn.microsoft.com/en-us/windows/wsl/wsl-config#main-wsl-settings

Installation Guide, Release 10.4.beta4

$ curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/
→˓download/Miniforge3-$(uname)-$(uname -m).sh"
$ bash Miniforge3-$(uname)-$(uname -m).sh
$ conda create -n sage sage python=3.11

(If there are any installation failures, please report them to the conda-forge maintainers by opening a GitHub
Issue for conda-forge/sage-feedstock.)

You can now start SageMath as follows:

$ conda activate sage
$ sage

This way of starting Sage gives you the most basic way of using Sage in the terminal. See Launching SageMath
for recommended next steps, in particular for setting up the Jupyter notebook, which is required if you want
to use graphics.

6 Chapter 2. Windows

https://github.com/conda-forge/sage-feedstock/issues
https://github.com/conda-forge/sage-feedstock/issues

CHAPTER

THREE

LINUX

• Do you want to do SageMath development?

– Yes, development:

Obtain the SageMath sources via git as described in The Sage Developer’s Guide.

∗ Then build SageMath from source as described in section Install from Source Code.

∗ Alternatively, follow the instructions in section Using conda to provide all dependencies for the Sage li-
brary; these describe an experimental method that gets all required packages, including Python packages,
from conda-forge.

– No development: Do you have root access (sudo)?

∗ Yes, root access: Then the easiest way to install SageMath is through a Linux distribution that pro-
vides it as a package. Some Linux distributions have up-to-date versions of SageMath, see repology.org:
sagemath for an overview. See Linux Package Managers for additional information.

If you are on an older version of your distribution and a recent version of SageMath is only available on
a newer version of the distribution, consider upgrading your distribution. In particular, do not install a
version of Sage older than 9.5.

∗ No root access, or on an older distribution: Install SageMath from the conda-forge project, as de-
scribed in section Install from conda-forge.

∗ Alternatively, build SageMath from source as described in section Install from Source Code.

7

https://doc.sagemath.org/html/en/developer/walkthrough.html#chapter-walkthrough
https://repology.org/project/sagemath/versions
https://repology.org/project/sagemath/versions
https://conda-forge.org/

Installation Guide, Release 10.4.beta4

8 Chapter 3. Linux

CHAPTER

FOUR

IN THE CLOUD

• Sage Binder repo provides a Binder badge to launch JupyterLab environment with Sage.

• Sage Cell Server is a free online service for quick computations with Sage.

• CoCalc is an online commercial service that provides Sage and many other tools.

• Docker image sagemathinc/cocalc can be used on any system with Docker to run CoCalc locally.

More information:

4.1 Linux Package Managers

SageMath is available from various distributions and can be installed by package managers.

As of Sage 10.2, we can recommend the following distributions, which provide well-maintained and up-to-date SageMath
packages: Arch Linux and Void Linux.

Gentoo users might want to give a try to sage-on-gentoo.

Do not install a version of Sage older than 9.5. If you are on an older version of your distribution and a recent version
of SageMath is only available on a newer version of the distribution, consider upgrading your distribution.

See the _sagemath dummy package for the names of packages that provide a standard installation of SageMath, including
documentation and Jupyter. See also repology.org: sagemath for information about versions of SageMath packages in
various distributions.

The GitHub wiki page Distribution collects information regarding packaging and distribution of SageMath.

4.2 Install from Pre-Built Binaries

4.2.1 Linux

SageMath used to provide pre-built binaries for several Linux flavors. This has been discontinued, as most major Linux
distributions have up-to-date distribution packages providing SageMath. See Linux Package Managers for information.

9

https://github.com/sagemath/sage-binder-env
https://sagecell.sagemath.org/
https://cocalc.com/
https://hub.docker.com/r/sagemathinc/cocalc
https://archlinux.org/
https://voidlinux.org/
https://github.com/cschwan/sage-on-gentoo
../reference/spkg/_sagemath.html
https://repology.org/project/sagemath/versions
https://github.com/sagemath/sage/wiki/Distribution

Installation Guide, Release 10.4.beta4

4.2.2 macOS

macOS binaries are available from the 3-manifolds project. These have been signed and notarized, eliminating various
errors caused by Apple’s gatekeeper antimalware protections.

SageMath used to provide pre-built binaries for macOS on its mirrors. This has been discontinued, and the old binaries
that are still available there are no longer supported.

4.2.3 Microsoft Windows

SageMath used to provide pre-built binaries for Windows based on Cygwin. This has been discontinued, and the old
binaries that can be found are no longer supported. Use Windows Subsystem for Linux instead.

4.3 Install from conda-forge

SageMath can be installed on Linux and macOS via Conda from the conda-forge conda channel.

Both the x86_64 (Intel) architecture and the arm64/aarch64 architectures (including Apple Silicon, M1) are sup-
ported.

You will need a working Conda installation: either Miniforge (or Mambaforge), Miniconda or Anaconda. If you don’t
have one yet, we recommend installing Miniforge as follows. In a terminal,

$ curl -L -O "https://github.com/conda-forge/miniforge/releases/latest/download/
→˓Miniforge3-$(uname)-$(uname -m).sh"
$ bash Miniforge3-$(uname)-$(uname -m).sh

• Miniforge (and Mambaforge) use conda-forge as the default channel.

• If you are using Miniconda or Anaconda, set it up to use conda-forge:

– Add the conda-forge channel: conda config --add channels conda-forge

– Change channel priority to strict: conda config --set channel_priority strict

If you installedMiniforge (orMambaforge), we recommend to usemamba in the following, which uses a faster dependency
solver than conda.

4.3.1 Installing all of SageMath from conda (not for development)

Create a new conda environment containing SageMath, either with mamba or conda:

$ mamba create -n sage sage python=X

$ conda create -n sage sage python=X

where X is version of Python, e.g. 3.9.

To use Sage from there,

• Enter the new environment: conda activate sage

• Start SageMath: sage

If there are any installation failures, please report them to the conda-forge maintainers by opening a GitHub Issue for
conda-forge/sage-feedstock.

10 Chapter 4. In the cloud

https://github.com/3-manifolds/Sage_macOS/releases/
https://conda-forge.org
https://github.com/conda-forge/miniforge
https://mamba.readthedocs.io/en/latest/index.html
https://github.com/conda-forge/sage-feedstock/issues
https://github.com/conda-forge/sage-feedstock/issues

Installation Guide, Release 10.4.beta4

4.3.2 Using conda to provide system packages for the Sage distribution

If Conda is installed (check by typing conda info), one can install SageMath from source as follows:

• Create a new conda environment including all standard packages recognized by sage, and activate it:

$ conda env create --file environment-3.11-linux.yml --name sage-build
$ conda activate sage-build

If you use a different architecture, replace linux by macos. Alternatively, use environment-op-
tional-3.11-linux.yml in place of environment-3.11-linux.yml to create an environment with
all standard and optional packages recognized by sage.

A different Python version can be selected by replacing 3.11 by 3.9 or 3.10 in these commands.

• Then the SageMath distribution will be built using the compilers provided by Conda and using many packages
installed by Conda:

$./bootstrap
$./configure --with-python=$CONDA_PREFIX/bin/python \

--prefix=$CONDA_PREFIX
$ make

4.3.3 Using conda to provide all dependencies for the Sage library

You can build and install the Sage library from source, using conda to provide all of its dependencies. This bypasses most
of the build system of the Sage distribution and is the fastest way to set up an environment for Sage development.

Here we assume that you are using a git checkout.

• Optionally, set the build parallelism for the Sage library. Use whatever the meaningful value for your machine is -
no more than the number of cores:

$ export SAGE_NUM_THREADS=24

• Create and activate a new conda environment with the dependencies of Sage and a few additional developer tools:

.. tab:: mamba

.. code-block:: shell

$ mamba env create --file src/environment-dev-3.11-linux.yml --name sage-dev
$ conda activate sage-dev

.. tab:: conda

.. code-block:: shell

$ conda env create --file src/environment-dev-3.11-linux.yml --name sage-dev
$ conda activate sage-dev

Alternatively, you can use src/environment-3.11-linux.yml or src/
environment-optional-3.11-linux.yml, which will only install standard (and optional) packages
without any additional developer tools.

A different Python version can be selected by replacing 3.11 by 3.9 or 3.10 in these commands.

• Bootstrap the source tree and install the build prerequisites and the Sage library:

4.3. Install from conda-forge 11

Installation Guide, Release 10.4.beta4

$./bootstrap
$ pip install --no-build-isolation --config-settings editable_mode=compat -v -v --
→˓editable ./src

If you encounter any errors, try to install the sage-conf package first:

$ pip install --no-build-isolation -v -v --editable ./pkgs/sage-conf_conda

and then run the last command again.

• Verify that Sage has been installed:

$ sage -c print(version())
SageMath version 10.2.beta4, Release Date: 2023-09-24

Note that make is not used at all. All dependencies (including all Python packages) are provided by conda.

Thus, you will get a working version of Sage much faster. However, note that this will invalidate the use of any
Sage-the-distribution commands such as sage -i. Do not use them.

By using pip install --editable in the above steps, the Sage library is installed in editable mode. This means
that when you only edit Python files, there is no need to rebuild the library; it suffices to restart Sage.

After editing any Cython files, rebuild the Sage library using:

$ pip install --no-build-isolation --config-settings editable_mode=compat -v -v --
→˓editable src

In order to update the conda environment later, you can run:

$ mamba env update --file src/environment-dev-3.11-linux.yml --name sage-dev

To build the documentation, use:

$ pip install --no-build-isolation -v -v --editable ./pkgs/sage-docbuild
$ sage --docbuild all html

Note: The switch --config-settings editable_mode=compat restores the legacy setuptools implementa-
tion of editable installations. Adventurous developers may omit this switch to try the modern, PEP-660 implementation
of editable installations, see Issue #34209.

Note: You can update the conda lock files by running .github/workflows/conda-lock-update.py or by
running conda-lock --platform linux-64 --filename src/environment-dev-3.11-linux.
yml --lockfile src/environment-dev-3.11-linux.lock manually.

12 Chapter 4. In the cloud

https://setuptools.pypa.io/en/latest/userguide/development_mode.html
https://setuptools.pypa.io/en/latest/userguide/development_mode.html
https://github.com/sagemath/sage/issues/34209

Installation Guide, Release 10.4.beta4

4.4 Install from Source Code

Building Sage from the source code has themajor advantage that your install will be optimized for your particular computer
and should therefore offer better performance and compatibility than a binary install.

Moreover, it offers you full development capabilities: you can change absolutely any part of Sage or the packages on
which it depends, and recompile the modified parts.

See the file README.md in SAGE_ROOT for information on supported platforms and step-by-step instructions.

The following sections provide some additional details. Most users will not need to read them. Some familiarity with the
use of the Unix command line may be required to build Sage from the source code.

4.4.1 Prerequisites

Disk space and memory

Your computer comes with at least 6 GB of free disk space. It is recommended to have at least 2 GB of RAM, but you
might get away with less (be sure to have some swap space in this case).

Software prerequisites and recommended packages

Sage depends on a large number of software packages. Sage provides its own software distribution providing most of
these packages, so you do not have to worry about having to download and install these packages yourself.

If you extracted Sage from a source tarball, the subdirectory upstream contains the source distributions for all standard
packages on which Sage depends. If cloned from a git repository, the upstream tarballs will be downloaded, verified, and
cached as part of the Sage installation process.

However, there are minimal prerequisites for building Sage that already must be installed on your system:

• Fundamental system packages required for installing from source

• C/C++ compilers

If you have sufficient privileges (for example, on Linux you can use sudo to become the root user), then you can
install these packages using the commands for your platform indicated in the pages linked above. If you do not have the
privileges to do this, ask your system administrator to do this for you.

In addition to these minimal prerequisites, we strongly recommend to use system installations of the following:

• Fortran compiler

• Python

Sage developers will also need the system packages required for bootstrapping; they cannot be installed by Sage.

When the ./configure script runs, it will check for the presence of many packages (including the above) and inform
you of any that are missing or have unsuitable versions. Please read the messages that ./configure prints: It will inform
you which additional system packages you can install to avoid having to build them from source. This can save a lot of
time.

The following sections provide the commands to install a large recommended set of packages on various systems, which
will minimize the time it takes to build Sage. This is intended as a convenient shortcut, but of course you can choose to
take a more fine-grained approach.

4.4. Install from Source Code 13

https://en.wikipedia.org/wiki/Source_code
https://github.com/sagemath/sage/#readme
../reference/spkg/index.html
../reference/spkg/_prereq.html
../reference/spkg/gcc.html
../reference/spkg/gfortran.html
../reference/spkg/python3.html
../reference/spkg/_bootstrap.html

Installation Guide, Release 10.4.beta4

Linux system package installation

We recommend that you install the following packages, depending on your distribution:

$ sudo apt-get install bc binutils bzip2 ca-certificates cliquer cmake curl \
ecl eclib-tools fflas-ffpack g++ gap gcc gengetopt gfan gfortran \
glpk-utils gmp-ecm lcalc libatomic-ops-dev libboost-dev \
libbraiding-dev libbrial-dev libbrial-groebner-dev libbz2-dev \
libcdd-dev libcdd-tools libcliquer-dev libcurl4-openssl-dev libec-dev \
libecm-dev libffi-dev libflint-dev libfplll-dev libfreetype-dev \
libgap-dev libgc-dev libgd-dev libgf2x-dev libgiac-dev libgivaro-dev \
libglpk-dev libgmp-dev libgsl-dev libhomfly-dev libiml-dev \
liblfunction-dev liblinbox-dev liblrcalc-dev liblzma-dev libm4ri-dev \
libm4rie-dev libmpc-dev libmpfi-dev libmpfr-dev libncurses5-dev \
libntl-dev libopenblas-dev libpari-dev libplanarity-dev libppl-dev \
libprimecount-dev libprimesieve-dev libpython3-dev libqhull-dev \
libreadline-dev librw-dev libsingular4-dev libsqlite3-dev libssl-dev \
libsuitesparse-dev libsymmetrica2-dev libz-dev libzmq3-dev m4 make \
maxima maxima-sage meson nauty ninja-build openssl palp pari-doc \
pari-elldata pari-galdata pari-galpol pari-gp2c pari-seadata patch \
patchelf perl pkg-config planarity ppl-dev python3 python3-setuptools \
python3-venv qhull-bin singular singular-doc sqlite3 sympow tachyon \
tar texinfo tox xcas xz-utils

$ sudo yum install --setopt=tsflags= L-function L-function-devel Singular \
Singular-devel binutils boost-devel brial brial-devel bzip2 \
bzip2-devel cddlib cliquer cliquer-devel cmake curl diffutils ecl \
eclib eclib-devel fflas-ffpack-devel findutils flint flint-devel gap \
gap-core gap-devel gap-libs gc gc-devel gcc gcc-c++ gcc-gfortran gd \
gd-devel gengetopt gf2x gf2x-devel gfan giac giac-devel givaro \
givaro-devel glpk glpk-devel glpk-utils gmp gmp-devel gmp-ecm \
gmp-ecm-devel gsl gsl-devel iml iml-devel info libatomic_ops \
libatomic_ops-devel libbraiding-devel libcurl-devel libffi \
libffi-devel libfplll libfplll-devel libgap libhomfly-devel libmpc \
libmpc-devel linbox-devel lrcalc-devel m4 m4ri-devel m4rie-devel make \
maxima maxima-runtime-ecl meson mpfr-devel nauty ncurses-devel \
ninja-build ntl-devel openblas-devel openssl openssl-devel palp \
pari-devel pari-elldata pari-galdata pari-galpol pari-gp pari-seadata \
patch patchelf perl perl-ExtUtils-MakeMaker perl-IPC-Cmd pkg-config \
planarity planarity-devel ppl ppl-devel primecount primecount-devel \
primesieve primesieve-devel python-setuptools python3 python3-devel \
qhull qhull-devel readline-devel rw-devel sqlite sqlite-devel \
suitesparse suitesparse-devel symmetrica-devel sympow tachyon \
tachyon-devel tar texinfo tox which xz xz-devel zeromq zeromq-devel \
zlib-devel

$ sudo pacman -S bc binutils boost brial cblas cddlib cliquer cmake ecl \
eclib fflas-ffpack fplll gap gc gcc gcc-fortran gd gf2x gfan giac glpk \
gsl iml lapack lcalc libatomic_ops libbraiding libgiac libhomfly \
linbox lrcalc m4 m4ri m4rie make maxima-fas meson nauty ninja openblas \
openssl palp pari pari-elldata pari-galdata pari-galpol pari-seadata \
patch perl pkgconf planarity ppl primecount primesieve python \
python-tox qhull rankwidth readline singular sqlite3 suitesparse \
symmetrica sympow tachyon tar which zeromq

$ sudo zypper install bc binutils boost-devel brial-devel bzip2 \
ca-certificates cddlib-tools cliquer cliquer-devel cmake curl \

(continues on next page)

14 Chapter 4. In the cloud

Installation Guide, Release 10.4.beta4

(continued from previous page)

diffutils edge-addition-planarity-suite \
edge-addition-planarity-suite-devel findutils flint-devel fplll \
fplll-devel gawk gcc gcc-c++ gcc-fortran gd gfan giac-devel \
glibc-locale-base glpk glpk-devel gmp-devel gzip iml-devel \
libbraiding-devel libhomfly-devel libopenssl-3-devel \
libprimecount-devel m4 make mathjax maxima-exec-clisp meson mpc-devel \
mpfi-devel nauty nauty-devel ninja ntl-devel openblas-devel pari-devel \
pari-galdata pari-gp patch patchelf perl pkgconf \
pkgconfig\(atomic_ops\) pkgconfig\(bdw-gc\) pkgconfig\(bzip2\) \
pkgconfig\(cddlib\) pkgconfig\(fflas-ffpack\) pkgconfig\(fplll\) \
pkgconfig\(freetype2\) pkgconfig\(gdlib\) pkgconfig\(gf2x\) \
pkgconfig\(givaro\) pkgconfig\(gsl\) pkgconfig\(libcurl\) \
pkgconfig\(libffi\) pkgconfig\(liblzma\) pkgconfig\(libpng16\) \
pkgconfig\(libzmq\) pkgconfig\(linbox\) pkgconfig\(m4ri\) \
pkgconfig\(m4rie\) pkgconfig\(mpfr\) pkgconfig\(ncurses\) \
pkgconfig\(ncursesw\) pkgconfig\(readline\) pkgconfig\(sqlite3\) \
pkgconfig\(zlib\) ppl-devel primecount primesieve python3 \
python3-devel python3-setuptools qhull-devel readline-devel \
suitesparse-devel sympow tachyon tar texinfo which xz

$ sudo xbps-install SuiteSparse-devel bash bc binutils boost-devel \
brial-devel bzip2-devel cddlib-devel cliquer-devel cmake curl \
diffutils ecl eclib-devel ecm-devel fflas-ffpack flintlib-devel \
fplll-devel freetype-devel gc-devel gcc gcc-fortran gd-devel gengetopt \
gf2x-devel gfan giac-devel givaro-devel glpk-devel gmp-devel \
gmpxx-devel gsl-devel gzip iml-devel lcalc-devel libatomic_ops-devel \
libbraiding-devel libcurl-devel libffi-devel libgomp-devel \
libhomfly-devel liblzma-devel libmpc-devel libpng-devel libqhull-devel \
libxcrypt-devel linbox-devel lrcalc-devel m4 m4ri-devel m4rie-devel \
make mathjax maxima-ecl mpfi-devel mpfr-devel nauty ncurses-devel \
ninja ntl-devel openblas-devel openssl-devel palp pari pari-devel \
pari-elldata-small pari-galdata pari-galpol-small pari-seadata patch \
patchelf perl pkgconf planarity-devel ppl-devel primecount-devel \
primesieve-devel python3 python3-appdirs python3-devel python3-distlib \
python3-filelock python3-setuptools python3-virtualenv qhull \
rankwidth-devel readline-devel singular sqlite-devel symmetrica-devel \
sympow tachyon tar texinfo tox which xz zeromq-devel zlib-devel

If you wish to do Sage development, we recommend that you additionally install the following:

$ sudo apt-get install autoconf automake gh git gpgconf libtool \
openssh-client pkg-config

$ sudo yum install autoconf automake gh git gnupg2 libtool openssh \
pkg-config

$ sudo pacman -S autoconf automake git github-cli gnupg libtool openssh \
pkgconf

$ sudo zypper install autoconf automake gh git gpg2 libtool openssh \
pkgconfig

$ sudo xbps-install autoconf automake git github-cli gnupg2 libtool \
mk-configure openssh pkg-config xtools

For all users, we recommend that you install the following system packages, which provide additional functionality and

4.4. Install from Source Code 15

Installation Guide, Release 10.4.beta4

cannot be installed by Sage. In particular, this includes LaTeX and related tools. In addition to a base install of TeX
Live, our lists of system packages below include everything that is needed for generating the Sage documentation in PDF
format. For converting Jupyter notebooks to PDF, also the document converter pandoc is needed. For making animations,
Sage needs to use one of the packages FFmpeg and ImageMagick.

$ sudo apt-get install default-jdk dvipng ffmpeg fonts-freefont-otf \
imagemagick latexmk libavdevice-dev libjpeg-dev pandoc tex-gyre \
texlive-fonts-recommended texlive-lang-cyrillic texlive-lang-english \
texlive-lang-european texlive-lang-french texlive-lang-german \
texlive-lang-italian texlive-lang-japanese texlive-lang-polish \
texlive-lang-portuguese texlive-lang-spanish texlive-latex-extra \
texlive-luatex texlive-xetex xindy

$ sudo yum install ImageMagick gnu-free-mono-fonts gnu-free-sans-fonts \
gnu-free-serif-fonts latexmk libjpeg-turbo-devel pandoc texlive \
texlive-collection-langcyrillic texlive-collection-langeuropean \
texlive-collection-langfrench texlive-collection-langgerman \
texlive-collection-langitalian texlive-collection-langjapanese \
texlive-collection-langpolish texlive-collection-langportuguese \
texlive-collection-langspanish texlive-collection-latexextra \
texlive-luatex

$ sudo pacman -S ffmpeg gnu-free-fonts imagemagick libjpeg-turbo pandoc \
texlive-collection-luatex texlive-core texlive-langcyrillic \
texlive-langjapanese texlive-latexextra

$ sudo zypper install ImageMagick ffmpeg gnu-free-fonts libjpeg-devel pandoc \
texlive texlive-luatex xindy

$ sudo xbps-install ImageMagick ffmpeg freefont-ttf libjpeg-turbo-devel \
pandoc texlive

In addition to these, if you don’t want Sage to build optional packages that might be available from your OS, cf. the
growing list of such packages on Issue #27330, install:

$ sudo apt-get install 4ti2 clang coinor-cbc coinor-libcbc-dev fricas \
graphviz libfile-slurp-perl libgraphviz-dev libigraph-dev libisl-dev \
libjson-perl libmongodb-perl libnauty-dev libperl-dev libpolymake-dev \
libsvg-perl libtbb-dev libterm-readkey-perl libterm-readline-gnu-perl \
libxml-libxslt-perl libxml-writer-perl libxml2-dev lrslib pari-gp2c \
pdf2svg polymake r-base-dev r-cran-lattice

$ sudo yum install 4ti2 R R-devel bliss bliss-devel clang coin-or-Cbc \
coin-or-Cbc-devel coxeter coxeter-devel coxeter-tools graphviz igraph \
igraph-devel isl-devel libnauty-devel libxml2-devel lrslib pari-galpol \
pari-seadata pdf2svg perl-ExtUtils-Embed perl-File-Slurp perl-JSON \
perl-MongoDB perl-Term-ReadLine-Gnu perl-TermReadKey perl-XML-LibXML \
perl-XML-LibXSLT perl-XML-Writer polymake tbb-devel

$ sudo pacman -S 4ti2 bliss clang coin-or-cbc coxeter graphviz igraph \
intel-oneapi-tbb libxml2 lrs pari-elldata pari-galpol pari-seadata \
pdf2svg perl-term-readline-gnu polymake r symengine

$ sudo zypper install 4ti2 4ti2-devel R-base bliss bliss-devel coxeter \
fricas gp2c graphviz libxml2 llvm lrslib lrslib-devel pari-elldata \

(continues on next page)

16 Chapter 4. In the cloud

https://en.wikipedia.org/wiki/LaTeX
../../../html/en/reference/spkg/texlive.html#spkg-texlive
../../../html/en/reference/spkg/texlive.html#spkg-texlive
../../../html/en/reference/spkg/pandoc.html#spkg-pandoc
../../../html/en/reference/spkg/ffmpeg.html#spkg-ffmpeg
../../../html/en/reference/spkg/imagemagick.html#spkg-imagemagick
https://github.com/sagemath/sage/issues/27330

Installation Guide, Release 10.4.beta4

(continued from previous page)

pari-galpol pari-nftables pari-seadata pdf2svg \
perl\(Term::ReadLine::Gnu\) pkgconfig\(isl\) \
pkgconfig\(libsemigroups\) polymake symengine tbb

$ sudo xbps-install CoinMP-devel R clang gp2c graphviz graphviz-devel \
igraph-devel isl-devel libxml2-devel nauty-devel pari-elldata-small \
pari-galpol-small pari-nftables pari-seadata perl-File-Slurp perl-JSON \
perl-SVG perl-Term-ReadKey perl-Term-ReadLine-Gnu perl-XML-LibXML \
perl-XML-LibXSLT perl-XML-Writer tbb-devel

macOS prerequisites

On macOS systems, you need a recent version of Command Line Tools. It provides all the above requirements.

Run the command xcode-select --install from a Terminal window and click “Install” in the pop-up dialog
box.

If you have already installed Xcode (which at the time of writing is freely available in the Mac App Store, or through
https://developer.apple.com/downloads/ provided you registered for an Apple Developer account), you can install the
command line tools from there as well.

If you have not installed Xcode you can get these tools as a relatively small download, but it does require a registration.

• First, you will need to register as an Apple Developer at https://developer.apple.com/register/.

• Having done so, you should be able to download it for free at https://developer.apple.com/downloads/index.action
=command 20line 20tools

• Alternately, https://developer.apple.com/opensource/ should have a link to Command Line Tools.

macOS package installation

If you use the Homebrew package manager, you can install the following:

$ brew install bdw-gc boost bzip2 cddlib cmake curl ecl flint fplll freetype \
gcc gd gengetopt gfortran glpk gmp gpatch gsl libatomic_ops libffi \
libiconv libmpc libpng maxima meson mpfi mpfr nauty ncurses ninja ntl \
openblas openssl pari pari-elldata pari-galdata pari-galpol \
pari-seadata patchelf pkg-config ppl primecount primesieve \
python-setuptools python3 qhull readline singular sqlite suite-sparse \
texinfo tox xz zeromq zlib

Some Homebrew packages are installed “keg-only,” meaning that they are not available in standard paths. To make them
accessible when building Sage, run

$ source SAGE_ROOT/.homebrew-build-env

(replacing SAGE_ROOT by Sage’s home directory). You can add a command like this to your shell profile if you want
the settings to persist between shell sessions.

If you wish to do Sage development, we recommend that you additionally install the following:

$ brew install autoconf automake gh git gnupg libtool pkg-config

For all users, we recommend that you install the following system packages, which provide additional functionality and
cannot be installed by Sage:

4.4. Install from Source Code 17

https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/xcode/
https://developer.apple.com/downloads/
https://developer.apple.com/xcode/
https://developer.apple.com/register/
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/downloads/index.action?=command%20line%20tools
https://developer.apple.com/opensource/
https://brew.sh

Installation Guide, Release 10.4.beta4

$ brew install ffmpeg imagemagick jpeg-turbo pandoc texinfo

Some additional optional packages are taken care of by:

$ brew install apaffenholz/polymake/polymake cbc graphviz igraph isl libxml2 \
llvm nauty pdf2svg r symengine tbb

WSL prerequisites

Ubuntu on Windows Subsystem for Linux (WSL) prerequisite installation

Refer to Windows for installing Ubuntu on Windows Subsystem for Linux (WSL). These instructions describe a fresh
install of Ubuntu, the default distribution in WSL, but other distributions or installation methods should work too.

From this point on, follow the instructions in the Linux system package installation section. It is strongly recommended to
put the Sage source files in the Linux file system, for example, in the /home/username/sage directory, and not in
the Windows file system (e.g. /mnt/c/...).

WSL permission denied error when building packaging package

You may encounter permission errors of the kind "[Errno 13] Permission denied: build/bdist.
linux-x86_64/wheel/<package>.dist-info " during make. This usually comes from a permission con-
flict between the Windows and Linux file system. To fix it create a temporary build folder in the Linux file system using
mkdir -p ~/tmp/sage and use it for building by eval SAGE_BUILD_DIR="~/tmp/sage" make. Also
see the related Github issue for other workarounds.

WSL post-installation notes

When the installation is complete, you may be interested inWSL Post-installation steps.

Other platforms

On Solaris, you would use pkgadd and on OpenSolaris ipf to install the necessary software.

On other systems, check the documentation for your particular operating system.

Notes on using conda

If you don’t want conda to be used by sage, deactivate conda (for the current shell session).

• Type:

$ conda deactivate

• Repeat the command until conda info shows:

$ conda info

active environment : None
...

18 Chapter 4. In the cloud

https://github.com/pypa/packaging-problems/issues/258

Installation Guide, Release 10.4.beta4

Then SageMath will be built either using the compilers provided by the operating system, or its own compilers.

Tcl/Tk (and system’s Python)

If you want to use Tcl/Tk libraries in Sage, and you are going to use your OS’s Python3 as Sage’s Python, you merely
need to install its Tkintermodule. On Linux systems, it is usually provided by the python3-tk or a similarly named (e.g.
python3-tkinter) package, which can be installed using:

$ sudo apt-get install python3-tk

or similar commands.

Tcl/Tk (and Sage’s own Python)

If you want to use Tcl/Tk libraries in Sage, and you are going to build Sage’s Python from source, you need to install
these, and the corresponding headers. On Linux systems, these are usually provided by the tk and tk-dev (or tk-devel)
packages which can be installed using:

$ sudo apt-get install tk tk-dev

or similar commands.

Sage’s Python will then automatically recognize your system’s install of Tcl/Tk. If you installed Sage first, all is not lost.
You just need to rebuild Sage’s Python and any part of Sage relying on it:

$ sage -f python3 # rebuild Python3
$ make # rebuild components of Sage depending on Python

after installing the Tcl/Tk development libraries as above.

If

sage: import _tkinter
sage: import Tkinter

does not raise an ImportError, then it worked.

4.4.2 Installation steps

1. Follow the procedure in the file README.md in SAGE_ROOT.

2. If you wish to prepare for having to build Sage in an environment without sufficient Internet connectivity:

• After running configure, you can use make download to force downloading packages before building.
After this, the packages are in the subdirectory upstream.

• Alternatively, instead of cloning the git repository, you can download a self-contained release tarball for any
stable release from the Sage project’s GitHub Releases. Use the file named sage-x.y.tar.gz (1.25 GB
as of Sage 10.2) in the Release Assets, which contains a prepopulated subdirectory upstream.

After downloading the source tarball sage-x.y.tar.gz into a directory ~/sage/:

$ cd ~/sage/
$ tar xf sage-x.y.tar.gz # adapt x.y; takes a while

This creates the subdirectory sage-x.y. Now change into it:

4.4. Install from Source Code 19

https://www.tcl.tk/
https://www.tcl.tk/
https://docs.python.org/library/exceptions.html#ImportError
https://github.com/sagemath/sage/#readme
https://github.com/sagemath/sage/releases

Installation Guide, Release 10.4.beta4

$ cd sage-x.y/ # adapt x.y

Note: On Windows, it is crucial that you unpack the source tree from the WSL 𝑏𝑎𝑠ℎ using the WSL 𝑡𝑎𝑟
utility and not using other Windows tools (including mingw).

This is because the Sage source tree contains symbolic links, and the build will not work if Windows line
endings rather than UNIX line endings are used.

• The Sage mirrors also provide such self-contained tarballs for all stable releases and additionally for all de-
velopment releases.

3. Additional remarks: You do not need to be logged in as root, since no files are changed outside of the SAGE_ROOT
directory. In fact, it is inadvisable to build Sage as root, as the root account should only be used when absolutely
necessary and mistyped commands can have serious consequences if you are logged in as root.

Typing make performs the usual steps for each Sage’s dependency, but installs all the resulting files into the instal-
lation prefix. Depending on the age and the architecture of your system, it can take from a few tens of minutes to
several hours to build Sage from source. On really slow hardware, it can even take a few days to build Sage.

Each component of Sage has its own build log, saved in SAGE_ROOT/logs/pkgs. If the build of Sage fails,
you will see a message mentioning which package(s) failed to build and the location of the log file for each failed
package. If this happens, then paste the contents of these log file(s) to the Sage support newsgroup at https://groups.
google.com/group/sage-support. If the log files are very large (and many are), then don’t paste the whole file, but
make sure to include any error messages. It would also be helpful to include the type of operating system (Linux,
macOS, Solaris, OpenSolaris, or any other system), the version and release date of that operating system and the
version of the copy of Sage you are using. (There are no formal requirements for bug reports – just send them; we
appreciate everything.)

SeeMake targets for some targets for the make command and Environment variables for additional information on
useful environment variables used by Sage.

4. To start Sage, you can now simply type from Sage’s home directory:

$./sage

You should see the Sage prompt, which will look something like this:

$ sage
┌──┐
│ SageMath version 8.8, Release Date: 2019-06-26 │
│ Using Python 3.10.4. Type "help()" for help. │
└──┘
sage:

Note that Sage should take well under a minute when it starts for the first time, but can take several minutes if
the file system is slow or busy. Since Sage opens a lot of files, it is preferable to install Sage on a fast filesystem if
possible.

Just starting successfully tests that many of the components built correctly. Note that this should have been already
automatically tested during the build process. If the above is not displayed (e.g., if you get a massive traceback),
please report the problem, e.g., at https://groups.google.com/group/sage-support.

After Sage has started, try a simple command:

sage: 2 + 2
4

20 Chapter 4. In the cloud

https://www.sagemath.org/download-source.html
https://www.sagemath.org/download-latest.html
https://www.sagemath.org/download-latest.html
https://groups.google.com/group/sage-support
https://groups.google.com/group/sage-support
https://groups.google.com/group/sage-support

Installation Guide, Release 10.4.beta4

Or something slightly more complicated:

sage: factor(2005)
5 * 401

5. Optional, but highly recommended: Test the install by typing ./sage --testall. This runs most examples in
the source code and makes sure that they run exactly as claimed. To test all examples, use ./sage --testall
--optional=all --long; this will run examples that take a long time, and those that depend on optional
packages and software, e.g., Mathematica or Magma. Some (optional) examples will therefore likely fail.

Alternatively, from within $SAGE_ROOT, you can type make test (respectively make ptest) to run all the
standard test code serially (respectively in parallel).

Testing the Sage library can take from half an hour to several hours, depending on your hardware. On slow hardware
building and testing Sage can even take several days!

6. Optional: Check the interfaces to any other software that you have available. Note that each interface calls its cor-
responding program by a particular name: Mathematica is invoked by calling math, Maple by calling maple,
etc. The easiest way to change this name or perform other customizations is to create a redirection script in
$SAGE_ROOT/local/bin. Sage inserts this directory at the front of your PATH, so your script may need
to use an absolute path to avoid calling itself; also, your script should pass along all of its arguments. For example,
a maple script might look like:

#!/bin/sh

exec /etc/maple10.2/maple.tty "$@"

7. Optional: There are different possibilities to make using Sage a little easier:

• Make a symbolic link from /usr/local/bin/sage (or another directory in your PATH) to
SAGE_ROOT/sage:

$ ln -s /path/to/sage_root/sage /usr/local/bin/sage

Now simply typing sage from any directory should be sufficient to run Sage.

• Copy SAGE_ROOT/sage to a location in your PATH. If you do this, make sure you edit the line:

#SAGE_ROOT=/path/to/sage-version

at the beginning of the copied sage script according to the direction given there to something like:

SAGE_ROOT=<SAGE_ROOT>

(note that you have to change <SAGE_ROOT> above!). It is best to edit only the copy, not the original.

• For KDE users, create a bash script called sage containing the lines (note that you have to change
<SAGE_ROOT> below!):

#!/usr/bin/env bash

konsole -T "sage" -e <SAGE_ROOT>/sage

make it executable:

$ chmod a+x sage

and put it somewhere in your PATH.

4.4. Install from Source Code 21

https://www.wolfram.com/mathematica/
https://www.maplesoft.com/
https://matplotlib.org/stable/users/installing/environment_variables_faq.html#envvar-PATH
https://matplotlib.org/stable/users/installing/environment_variables_faq.html#envvar-PATH
https://github.com/sagemath/sage/tree/develop/sage
https://github.com/sagemath/sage/tree/develop/sage
https://matplotlib.org/stable/users/installing/environment_variables_faq.html#envvar-PATH
https://www.kde.org/
https://matplotlib.org/stable/users/installing/environment_variables_faq.html#envvar-PATH

Installation Guide, Release 10.4.beta4

You can also make a KDE desktop icon with this line as the command (under the Application tab of the
Properties of the icon, which you get my right clicking the mouse on the icon).

• On Linux and macOS systems, you can make an alias to SAGE_ROOT/sage. For example, put something
similar to the following line in your .bashrc file:

alias sage=<SAGE_ROOT>/sage

(Note that you have to change <SAGE_ROOT> above!) Having done so, quit your terminal emulator and
restart it. Now typing sage within your terminal emulator should start Sage.

8. Optional: Install optional Sage packages and databases. See the list of optional packages in the reference manual
for detailed information, or type sage --optional (this requires an Internet connection).

Then type sage -i <package-name> to automatically download and install a given package.

9. Have fun! Discover some amazing conjectures!

4.4.3 Make targets

To build Sage from scratch, you would typically execute make in Sage’s home directory to build Sage and its HTML
documentation. The make command is pretty smart, so if your build of Sage is interrupted, then running make again
should cause it to pick up where it left off. The make command can also be given options, which control what is built
and how it is built:

• make build builds Sage: it compiles all of the Sage packages. It does not build the documentation.

• make doc builds Sage’s documentation in HTML format. Note that this requires that Sage be built first, so it will
automatically run make build first. Thus, running make doc is equivalent to running make.

• make doc-pdf builds Sage’s documentation in PDF format. This also requires that Sage be built first, so it will
automatically run make build.

• make doc-html-no-plot builds Sage’s documentation in html format but skips the inclusion of graphics
auto-generated using the .. PLOT markup and the sphinx_plot function. This is primarily intended for
use when producing certain binary distributions of Sage, to lower the size of the distribution. As of this writing
(December 2014, Sage 6.5), there are only a few such plots, adding about 4M to thelocal/share/doc/sage/
directory. In the future, this may grow, of course. Note: after using this, if you want to build the documentation
and include the pictures, you should run make doc-uninstall, because the presence, or lack, of pictures is
cached in the documentation output. You can benefit from this no-plot feature with other make targets by doing
export SAGE_DOCBUILD_OPTS+= --no-plot

• make ptest and make ptestlong: these run Sage’s test suite. The first version skips tests that need more
than a few seconds to complete and those which depend on optional packages or additional software. The second
version includes the former, and so it takes longer. The “p” in ptest stands for “parallel”: tests are run in parallel.
If you want to run tests serially, you can use make test or make testlong instead. If you want to run
tests depending on optional packages and additional software, you can use make testall, make ptestall,
make testalllong, or make ptestalllong.

• make doc-uninstall and make doc-clean each remove several directories which are produced when
building the documentation.

• make distclean restores the Sage directory to its state before doing any building: it is almost equivalent to
deleting Sage’s entire home directory and unpacking the source tarfile again, the only difference being that the
.git directory is preserved, so git branches are not deleted.

22 Chapter 4. In the cloud

https://github.com/sagemath/sage/tree/develop/sage
../reference/spkg/index.html#optional-packages
https://en.wikipedia.org/wiki/HTML

Installation Guide, Release 10.4.beta4

4.4.4 Environment variables

Sage uses several environment variables to control its build process. Most users won’t need to set any of these: the build
process just works on many platforms. (Note though that setting MAKE, as described below, can significantly speed up
the process.) Building Sage involves building many packages, each of which has its own compilation instructions.

Standard environment controlling the build process

Here are some of the more commonly used variables affecting the build process:

MAKE

One useful setting for this variable when building Sage is MAKE= make -jNUM to tell the make program to
run NUM jobs in parallel when building. Note that some Sage packages may not support this variable.

Some people advise using more jobs than there are CPU cores, at least if the system is not heavily loaded and has
plenty of RAM; for example, a good setting for NUM might be between 1 and 1.5 times the number of cores. In
addition, the -l option sets a load limit: MAKE= make -j4 -l5.5, for example, tells make to try to use four
jobs, but to not start more than one job if the system load average is above 5.5. See the manual page for GNU
make: Command-line options and Parallel building.

V

If set to 0, silence the build. Instead of showing a detailed compilation log, only one line of output is shown at the
beginning and at the end of the installation of each Sage package. To see even less output, use:

$ make -s V=0

(Note that the above uses the syntax of setting a Makefile variable.)

CC

While some programs allow you to use this to specify your C compiler, not every Sage package recognizes this.
If GCC is installed within Sage, CC is ignored and Sage’s gcc is used instead.

CPP

Similarly, this will set the C preprocessor for some Sage packages, and similarly, using it is likely quite risky. If
GCC is installed within Sage, CPP is ignored and Sage’s cpp is used instead.

CXX

Similarly, this will set the C++ compiler for some Sage packages, and similarly, using it is likely quite risky. If
GCC is installed within Sage, CXX is ignored and Sage’s g++ is used instead.

FC

Similarly, this will set the Fortran compiler. This is supported by all Sage packages which have Fortran code.
However, for historical reasons, the value is hardcoded during the initial make and subsequent changes to $FC
might be ignored (in which case, the original value will be used instead). If GCC is installed within Sage, FC is
ignored and Sage’s gfortran is used instead.

CFLAGS

CXXFLAGS

FCFLAGS

The flags for the C compiler, the C++ compiler and the Fortran compiler, respectively. The same comments apply
to these: setting them may cause problems, because they are not universally respected among the Sage packages.
Note also that export CFLAGS="" does not have the same effect as unset CFLAGS. The latter is preferable.

CPPFLAGS

4.4. Install from Source Code 23

https://www.gnu.org/software/make/manual/make.html#Options-Summary
https://www.gnu.org/software/make/manual/make.html#Parallel

Installation Guide, Release 10.4.beta4

LDFLAGS

CXXFLAG64

LDFLAG64

LD

Similar comments apply to these compiler and linker flags.

Sage-specific environment variables controlling the build process

SAGE_SERVER

The Sage source tarball already includes the sources for all standard packages, that is, it allows you to build Sage
without internet connection. The git repository, however, does not contain the source code for third-party packages.
Instead, it will be downloaded as needed (note: you can run make download to force downloading packages
before building).

If SAGE_SERVER is set, the specified Sage mirror is contacted first. Note that Sage will search the directory
SAGE_SERVER/spkg/upstream for upstream tarballs.

If downloading a file from there fails or SAGE_SERVER is not set, files will be attempted to download from release
assets of the Sage GitHub repository.

If that fails too, the Sage mirror network is contacted to determine the nearest mirrors.

This sequence of operations is defined by the files in the directory SAGE_ROOT/.upstream.d.

SAGE_NUM_THREADS

If set to a number, then when rebuilding with sage -b or parallel doctesting with sage -t -p 0, use at most
this many threads.

If this is not set, then determine the number of threads using the value of the MAKE (see above) or MAKEFLAGS
environment variables. If none of these specifies a number of jobs,

• sage -b only uses one thread

• sage -t -p 0 uses a default of the number of CPU cores, with a maximum of 8 and a minimum of 2.

When sage -t -p runs under the control of the GNU make jobserver, then Sage will request as most this
number of job slots.

SAGE_CHECK

If set to yes, then during the build process, or when installing packages manually, run the test suite for each
package which has one, and stop with an error if tests are failing. If set to warn, then only a warning is printed in
this case. See also SAGE_CHECK_PACKAGES.

SAGE_CHECK_PACKAGES

If SAGE_CHECK is set to yes, then the default behavior is to run test suites for all spkgs which contain them. If
SAGE_CHECK_PACKAGES is set, it should be a comma-separated list of strings of the form package-name
or !package-name. An entry package-name means to run the test suite for the named package regardless
of the setting of SAGE_CHECK . An entry !package-name means to skip its test suite. So if this is set to
ppl,!python3, then always run the test suite for PPL, but always skip the test suite for Python 3.

Note: As of Sage 9.1, the test suites for the Python 2 and 3 spkgs fail on most platforms. So when this variable is
empty or unset, Sage uses a default of !python2,!python3.

24 Chapter 4. In the cloud

https://github.com/sagemath/sage/tree/develop/.upstream.d

Installation Guide, Release 10.4.beta4

SAGE_INSTALL_GCC

Obsolete, do not use, to be removed

SAGE_INSTALL_CCACHE

By default Sage doesn’t install ccache, however by setting SAGE_INSTALL_CCACHE=yes Sage will install
ccache. Because the Sage distribution is quite large, the maximum cache is set to 4G. This can be changed by
running sage -sh -c "ccache --max-size=SIZE", where SIZE is specified in gigabytes, megabytes,
or kilobytes by appending a “G”, “M”, or “K”.

Sage does not include the sources for ccache since it is an optional package. Because of this, it is necessary to have
an Internet connection while building ccache for Sage, so that Sage can pull down the necessary sources.

SAGE_DEBUG

Controls debugging support. There are three different possible values:

• Not set (or set to anything else than “yes” or “no”): build binaries with debugging symbols, but no special
debug builds. This is the default. There is no performance impact, only additional disk space is used.

• SAGE_DEBUG=no: no means no debugging symbols (that is, no gcc -g), which saves some disk space.

• SAGE_DEBUG=yes: build debug versions if possible (in particular, Python is built with additional debugging
turned on and Singular is built with a different memory manager). These will be notably slower but, for
example, make it much easier to pinpoint memory allocation problems.

Instead of using SAGE_DEBUG one can configure with --enable-debug={no|symbols|yes}.

SAGE_PROFILE

Controls profiling support. If this is set to yes, profiling support is enabled where possible. Note that Python-level
profiling is always available; this option enables profiling in Cython modules.

SAGE_BUILD_DIR

The default behavior is to build each spkg in a subdirectory of $SAGE_ROOT/local/var/tmp/sage/
build/; for example, build version 7.27.0 of ipython in the directory $SAGE_ROOT/local/var/
tmp/sage/build/ipython-7.27.0/. If this variable is set, then build in $SAGE_BUILD_DIR/
ipython-7.27.0/ instead. If the directory $SAGE_BUILD_DIR does not exist, it is created. As of this
writing (Sage 4.8), when building the standard Sage packages, 1.5 gigabytes of free space are required in this di-
rectory (or more if SAGE_KEEP_BUILT_SPKGS=yes – see below); the exact amount of required space varies
from platform to platform. For example, the block size of the file system will affect the amount of space used, since
some spkgs contain many small files.

Warning: The variable SAGE_BUILD_DIR must be set to the full path name of either an existing directory
for which the user has write permissions, or to the full path name of a nonexistent directory which the user has
permission to create. The path name must contain no spaces.

SAGE_KEEP_BUILT_SPKGS

The default behavior is to delete each build directory – the appropriate subdirectory of $SAGE_ROOT/local/
var/tmp/sage/build or $SAGE_BUILD_DIR – after each spkg is successfully built, and to keep it if there
were errors installing the spkg. Set this variable to yes to keep the subdirectory regardless. Furthermore, if you
install an spkg for which there is already a corresponding subdirectory, for example left over from a previous build,
then the default behavior is to delete that old subdirectory. If this variable is set to yes, then the old subdirec-
tory is moved to $SAGE_ROOT/local/var/tmp/sage/build/old/ (or $SAGE_BUILD_DIR/old),
overwriting any already existing file or directory with the same name.

Note: After a full build of Sage (as of version 4.8), these subdirectories can take up to 6 gigabytes of storage,
in total, depending on the platform and the block size of the file system. If you always set this variable to yes, it

4.4. Install from Source Code 25

../../../html/en/reference/spkg/ccache.html#spkg-ccache

Installation Guide, Release 10.4.beta4

can take even more space: rebuilding every spkg would use double the amount of space, and any upgrades to spkgs
would create still more directories, using still more space.

Note: In an existing Sage installation, running sage -i -s <package-name> or sage -f -s
<package-name> installs the spkg <package-name> and keeps the corresponding build directory; thus
setting SAGE_KEEP_BUILT_SPKGS to yes mimics this behavior when building Sage from scratch or when
installing individual spkgs. So you can set this variable to yes instead of using the -s flag for sage -i and
sage -f.

SAGE_FAT_BINARY

To build binaries that will run on the widest range of target CPUs set this variable to yes before building Sage
or configure with --enable-fat-binary. This does not make the binaries relocatable, it only avoids newer
CPU instruction set extensions. For relocatable (=can be moved to a different directory) binaries, you must use
https://github.com/sagemath/binary-pkg

SAGE_SUDO

Set this to sudo -E or to any other command prefix that is necessary to write into a installation hierarchy
(SAGE_LOCAL) owned by root or another user. Note that this command needs to preserve environment vari-
able settings (plain sudo does not).

Not all Sage packages currently support SAGE_SUDO.

Therefore this environment variable is most useful when a system administrator wishes to install an additional Sage
package that supports SAGE_SUDO, into a root-owned installation hierarchy (SAGE_LOCAL).

Environment variables controlling the documentation build

SAGE_DOCBUILD_OPTS

The value of this variable is passed as an argument to sage --docbuild all html or sage --docbuild
all pdf when you run make, make doc, or make doc-pdf. For example:

• add --no-plot to this variable to avoid building the graphics coming from the .. PLOT directive within
the documentation,

• add --no-preparsed-examples to only show the original Sage code of “EXAMPLES” blocks, sup-
pressing the tab with the preparsed, plain Python version, or

• add --include-tests-blocks to include all “TESTS” blocks in the reference manual.

Run sage --docbuild help to see the full list of options.

SAGE_SPKG_INSTALL_DOCS

If set to yes, then install package-specific documentation to $SAGE_ROOT/local/share/doc/
PACKAGE_NAME/ when an spkg is installed. This option may not be supported by all spkgs. Some spkgs might
also assume that certain programs are available on the system (for example, latex or pdflatex).

SAGE_USE_CDNS

If set to yes, then build the documentation using CDNs (Content Distribution Networks) for scripts necessary for
HTML documentation, such as MathJax.

SAGE_LIVE_DOC

If set to yes, then build live Sage documentation. If the Make live button on any webpage of the live doc
is clicked, every example code gets a CodeMirror code cell runnable via Thebe. Thebe is responsible in sending

26 Chapter 4. In the cloud

https://github.com/sagemath/binary-pkg
https://www.mathjax.org/
https://codemirror.net
https://thebe.readthedocs.io/en/stable/

Installation Guide, Release 10.4.beta4

the code to the Sage computing environment built by Binder and showing the output result. The Sage comput-
ing environment can be specified to either a Binder repo or a local Jupyter server. The environment variable
SAGE_JUPYTER_SERVER is used for this purpose.

SAGE_JUPYTER_SERVER

Set this to either binder, binder:repo with repo specifying a Binder repo or the URL to a local Jupyter
server.

• binder refers to Sage’s official Binder repo. This is assumed if the environment variable
SAGE_JUPYTER_SERVER is not set.

• binder:repo specifies a Binder repo with repo, which is a GitHub repository name, optionally added
with a branch name with / separator.

• To use a local Jupyter server instead of Binder, then set the URL to SAGE_JUPYTER_SERVER and the
secret token to environment variable SAGE_JUPYTER_SERVER_TOKEN, which can be left unset if the
default token secret is used. If the live doc was built with SAGE_JUPYTER_SERVER=http://
localhost:8889, run a local Jupyter server by

./sage --notebook=jupyterlab \
--ServerApp.token= secret \
--ServerApp.allow_origin= null \
--ServerApp.disable_check_xsrf=true \
--ServerApp.port=8889 \
--ServerApp.open_browser=false

before opening the Sage documentation webpage.

Environment variables dealing with specific Sage packages

SAGE_MATPLOTLIB_GUI

If set to anything non-empty except no, then Sage will attempt to build the graphical backend when it builds the
matplotlib package.

OPENBLAS_CONFIGURE

Adds additional configuration flags for the OpenBLAS package that gets added to the make command. (see Issue
#23272)

PARI_CONFIGURE

Use this to pass extra parameters to PARI’s Configure script, for example to specify graphics support (which
is disabled by default). See the file build/pkgs/pari/spkg-install.in for more information.

SAGE_TUNE_PARI

If yes, enable PARI self-tuning. Note that this can be time-consuming. If you set this variable to “yes”, you will
also see this: WARNING: Tuning PARI/GP is unreliable. You may find your build of
PARI fails, or PARI/GP does not work properly once built. We recommend to
build this package with SAGE_CHECK="yes".

PARI_MAKEFLAGS

The value of this variable is passed as an argument to the $MAKE command when compiling PARI.

4.4. Install from Source Code 27

https://mybinder.org/
https://github.com/sagemath/sage-binder-env
https://github.com/sagemath/sage/issues/23272
https://github.com/sagemath/sage/issues/23272

Installation Guide, Release 10.4.beta4

Environment variables dealing with doctesting

SAGE_TIMEOUT

Used for Sage’s doctesting: the number of seconds to allow a doctest before timing it out. If this isn’t set, the default
is 300 seconds (5 minutes).

SAGE_TIMEOUT_LONG

Used for Sage’s doctesting: the number of seconds to allow a doctest before timing it out, if tests are run using
sage -t --long. If this isn’t set, the default is 1800 seconds (30 minutes).

SAGE_TEST_GLOBAL_ITER

SAGE_TEST_ITER

These can be used instead of passing the flags --global-iterations and --file-iterations, respec-
tively, to sage -t. Indeed, these variables are only used if the flags are unset. Run sage -t -h for more
information on the effects of these flags (and therefore these variables).

Environment variables set within Sage environments

Sage sets some other environment variables. The most accurate way to see what Sage does is to first run env from a shell
prompt to see what environment variables you have set. Then run sage --sh -c env to see the list after Sage sets
its variables. (This runs a separate shell, executes the shell command env, and then exits that shell, so after running this,
your settings will be restored.) Alternatively, you can peruse the shell script src/bin/sage-env.

Sage also has some environment-like settings. Some of these correspond to actual environment variables while others have
names like environment variables but are only available while Sage is running. To see a list, execute sage.env.[TAB]
while running Sage.

4.4.5 Installation in a multiuser environment

This section addresses the question of how a system administrator can install a single copy of Sage in amulti-user computer
network.

1. Using sudo, create the installation directory, for example, /opt/sage/sage-x.y. We refer to it as
SAGE_LOCAL in the instructions below. Do not try to install into a directory that already contains other soft-
ware, such as /usr/local:

$ sudo mkdir -p SAGE_LOCAL

2. Make the directory writable for you and readable by everyone:

$ sudo chown $(id -un) SAGE_LOCAL
$ sudo chmod 755 SAGE_LOCAL

3. Build and install Sage, following the instructions in README.md, using the configure option --pre-
fix=SAGE_LOCAL.

Do not use sudo for this step; building Sage must be done using your normal user account.

4. Optionally, create a symbolic link to the installed sage script in a directory that is in the users’ PATH, for example
/usr/local/bin:

$ sudo ln -s SAGE_LOCAL/bin/sage /usr/local/bin/sage

5. Optionally, change permissions to prevent accidental changes to the installation by yourself:

28 Chapter 4. In the cloud

https://github.com/sagemath/sage/#readme
https://matplotlib.org/stable/users/installing/environment_variables_faq.html#envvar-PATH

Installation Guide, Release 10.4.beta4

$ sudo chown -R root SAGE_LOCAL

4.4.6 Upgrading the system and upgrading Sage

Caveats when upgrading system packages

When Sage has been installed from source, it will make use of various system packages; in particular, it will link to shared
libraries provided by the system.

The system’s package manager does not keep track of the applications that make use of the shared libraries. Therefore
indiscriminate upgrades of system packages can break a Sage installation.

This can always be fixed by a full rebuild:

$ make distclean && make build

But this time-consuming step can often be avoided by just reinstalling a few packages. The command make -j
list-broken-packages assists with this:

$ make -j list-broken-packages
make --no-print-directory auditwheel_or_delocate-no-deps
...
Checking .../local/var/lib/sage/installed/bliss-0.73+debian-1+sage-2016-08-02.p0
...
Checking shared library file .../local/lib/libumfpack.dylib
Checking shared library file .../local/var/tmp/sage/build/suitesparse-5.10.1/src/lib/
→˓libsliplu.1.0.2.dylib
Error during installcheck of suitesparse : .../local/var/tmp/sage/build/suitesparse-
→˓5.10.1/src/lib/libsliplu.1.0.2.dylib
...
Uninstall broken packages by typing:

make lcalc-SAGE_LOCAL-uninstall;
make ratpoints-SAGE_LOCAL-uninstall;
make r-SAGE_LOCAL-uninstall;
make suitesparse-SAGE_LOCAL-uninstall;

After running the suggested commands, run:

$ make build

Upgrading Sage using a separate git worktree

When you have a working installation of Sage built from source and wish to try out a new version, we strongly recommend
to use a separate git worktree, so that you can keep using your existing installation when something goes wrong.

Start from the directory created when you used git clone, perhaps ~/sage/sage/. Let’s verify that this is indeed
a git repository by looking at the hidden .git subdirectory. It will looks like this, but the exact contents can vary:

[alice@localhost sage]$ ls .git
COMMIT_EDITMSG HEAD branches description gitk.cache
index logs packed-refs FETCH_HEAD ORIG_HEAD
config hooks info objects refs

Good. Now let’s see what worktrees already exist:

4.4. Install from Source Code 29

https://git-scm.com/docs/git-worktree

Installation Guide, Release 10.4.beta4

[alice@localhost sage]$ git worktree list
/home/alice/sage/sage c0ffeefe10 [master]

We see just one line, the directory created when you used git clone. We will call this the “main worktree” from now
on. Next to the directory, you can see the abbreviated commit sha and the name of the branch that we’re on (master).

To try out a new version of Sage, let’s fetch it first from the main repository:

[alice@localhost sage]$ git fetch upstream 10.3.beta8
From https://github.com/sagemath/sage
* tag 10.3.beta8 -> FETCH_HEAD

Now let’s create a new worktree. We need a name for it; it should start with worktree- but can be anything after
that. Experience shows that worktrees are often repurposed later, and because a directory containing a Sage installation
cannot be moved without breaking the installation in it, it may be a good idea to choose a memorable name without much
meaning:

[alice@localhost sage]$ git worktree add worktree-purple FETCH_HEAD
Preparing worktree (detached HEAD 30b3d78fac)
Updating files: 100% (11191/11191), done.
HEAD is now at 30b3d78fac Updated SageMath version to 10.3.beta8

We now have a subdirectory worktree-purple. This is a “linked worktree”:

[alice@localhost sage]$ git worktree list
/home/alice/sage/sage c0ffeefe10 [master]
/home/alice/sage/sage/worktree-purple 30b3d78fac (detached HEAD)
[alice@localhost sage]$ cd worktree-purple
[alice@localhost worktree-purple]$ cat VERSION.txt
SageMath version 10.3.beta8, Release Date: 2024-02-13

All worktrees created in this way share the same repository, so they have access to all branches:

[alice@localhost worktree-purple]$ git --no-pager branch -v
* (no branch) 30b3d78fac Updated SageMath version to 10.3.beta8
+ master 2a9a4267f9 Updated SageMath version to 10.2

In fact, .git here is not a directory, just a hidden file:

[alice@localhost worktree-purple]$ ls -l .git
-rw-r--r-- 1 alice staff 59 Feb 20 18:16 .git

In the new worktree, we now build Sage from scratch. This is completely independent of and will not disrupt your existing
working installation in the main worktree.

We will refer again to the step-by-step instructions from the file README.md. Our worktree worktree-purple is
the SAGE_ROOT for this purpose.

One thing that we can share between worktrees without worry is the directoryupstream, where Sage caches downloaded
archives of packages. To have the new worktree share it with the main worktree, let’s create a symbolic link. This is an
optional step that will avoid re-downloading files that you already have:

[alice@localhost worktree-purple]$ ln -s ../upstream/ .

Now let’s build Sage, starting with the step:

[alice@localhost worktree-purple]$ make configure

Refer to the file README.md for the following steps.

30 Chapter 4. In the cloud

https://github.com/sagemath/sage/#readme
https://github.com/sagemath/sage/#readme

Installation Guide, Release 10.4.beta4

4.5 Launching SageMath

Now we assume that you installed SageMath properly on your system. This section quickly explains how to start the Sage
console and the Jupyter Notebook from the command line.

If you did install the Windows version or the macOS application you should have icons available on your desktops or
launching menus. Otherwise you are strongly advised to create shortcuts for Sage as indicated in the part 6 of the “Instal-
lation steps” Section in Installation steps. Assuming that you have this shortcut, running

sage

in a console starts a Sage session. To quit the session enter quit and then press <Enter>.

To start a Jupyter Notebook instead of a Sage console, run the command

sage -n jupyter

instead of just sage. To quit the Jupyter Notebook press <Ctrl> + <c> twice in the console where you launched the
command.

You can pass extra parameters to this command. For example,

sage -n jupyter --port 8899

will run the Jupyter server on a port different from the default (8888). In particular on WSL, this is very useful because
Jupyter may not be able to detect whether the default port is already taken by another instance of Jupyter running in
Windows.

4.5.1 Environment variables

Sage uses the following environment variables when it runs:

• DOT_SAGE - this is the directory, to which the user has read and write access, where Sage stores a number of files.
The default location is $HOME/.sage/.

• SAGE_STARTUP_FILE - a file including commands to be executed every time Sage starts. The default value is
$DOT_SAGE/init.sage.

• BROWSER - on most platforms, Sage will detect the command to run a web browser, but if this doesn’t seem to
work on your machine, set this variable to the appropriate command.

• TMPDIR - this variable is used by Python, and hence by Sage; it gives the directory in which temporary files
should be stored. This includes files used by the notebook. Some browsers have security settings which restrict the
locations of files that they will access, and users may need to set this variable to handle this situation.

• See https://docs.python.org/3/using/cmdline.html#environment-variables for more variables used by Python (not
an exhaustive list). With Python 3.11 or later, a brief summary can also be obtained by running 𝑝𝑦𝑡ℎ𝑜𝑛3−−ℎ𝑒𝑙𝑝−
𝑒𝑛𝑣.

4.5. Launching SageMath 31

https://docs.python.org/3/using/cmdline.html#environment-variables

Installation Guide, Release 10.4.beta4

4.5.2 Using a Jupyter Notebook remotely

If Sage is installed on a remote machine to which you have ssh access, you can launch a Jupyter Notebook using a
command such as

ssh -L localhost:8888:localhost:8888 -t USER@REMOTE sage -n jupyter --no-browser --
→˓port=8888

where USER@REMOTE needs to be replaced by the login details to the remote machine. This uses local port forwarding
to connect your local machine to the remote one. The command will print a URL to the console which you can copy and
paste in a web browser.

Note that this assumes that a firewall which might be present between server and client allows connections on port 8888.
See details on port forwarding on the internet, e.g. https://www.ssh.com/ssh/tunneling/example.

4.5.3 WSL Post-installation steps

If you’ve installed SageMath from source on WSL, there are a couple of extra steps you can do to make your life easier:

Create a notebook launch script

If you plan to use JupyterLab, install that first.

Now create a script called ~/sage_nb.sh containing the following lines, and fill in the correct paths for your desired
starting directory and SAGE_ROOT

#!/bin/bash
Switch to desired windows directory
cd /mnt/c/path/to/desired/starting/directory
Start the Jupyter notebook
SAGE_ROOT/sage --notebook
Alternatively you can run JupyterLab - delete the line above, and uncomment the␣
→˓line below
#SAGE_ROOT/sage --notebook jupyterlab

Make it executable:

chmod ug+x ~/sage_nb.sh

Run it to test:

cd ~
./sage_nb.sh

The Jupyter(Lab) server should start in the terminal window, and you windows browser should open a page showing the
Jupyter or JupyterLab starting page, at the directory you specified.

32 Chapter 4. In the cloud

https://www.ssh.com/ssh/tunneling/example

Installation Guide, Release 10.4.beta4

Create a shortcut

This is a final nicety that lets you start the Jupyter or JupyterLab server in one click:

• Open Windows explorer, and type %APPDATA%\Microsoft\Windows\Start Menu\Programs in the
address bar and press enter. This is the folder that contains you start menu shortcuts. If you want the sage shortcut
somewhere else (like your desktop), open that folder instead.

• Open a separate window and go to %LOCALAPPDATA%\Microsoft\WindowsApps\

• Right-click-drag the ubuntu.exe icon from the second window into the first, then choose Create short-
cuts here from the context menu when you drop it.

• To customize this shortcut, right-click on it and choose properties.

– On the General tab:

∗ Change the name to whatever you want, e.g. “Sage 9.2 JupyterLab”

– On the Shortcut tab:

∗ Change Target to: ubuntu.exe run ~/sage_nb.sh

∗ Change Start in to: %USERPROFILE%

∗ Change Run to: Minimised

∗ Change the icon if you want

Now hit the start button or key and type the name you gave it. it should appear in the list, and should load the server and
fire up your browser when you click on it.

For further reading you can have a look at the other documents in the SageMath documentation at http://doc.sagemath.
org/.

4.5.4 Setting up SageMath as a Jupyter kernel in an existing Jupyter notebook or
JupyterLab installation

You may already have a global installation of Jupyter. For added convenience, it is possible to link your installation of
SageMath into your Jupyter installation, adding it to the list of available kernels that can be selected in the notebook or
JupyterLab interface.

Assuming that SageMath can be invoked by typing sage, you can use

sage -sh -c ls -d $SAGE_VENV/share/jupyter/kernels/sagemath

to find the location of the SageMath kernel description.

Now pick a name for the kernel that identifies it clearly and uniquely.

For example, if you install Sage from source tarballs, you could decide to include the version number in the name, such as
sagemath-9.6. If you build SageMath from a clone of the git repository, it is better to choose a name that identifies
the directory, perhaps sagemath-dev or sagemath-teaching because the version will change.

Now assuming that the Jupyter notebook can be started by typing jupyter notebook, the following command will
install SageMath as a new kernel named sagemath-dev.

jupyter kernelspec install --user $(sage -sh -c ls -d $SAGE_VENV/share/jupyter/
→˓kernels/sagemath) --name sagemath-dev

4.5. Launching SageMath 33

http://doc.sagemath.org/
http://doc.sagemath.org/

Installation Guide, Release 10.4.beta4

The jupyter kernelspec approach by default does lead to about 2Gb of SageMath documentation being copied
into your personal jupyter configuration directory. You can avoid that by instead putting a symlink in the relevant spot.
and

jupyter --paths

to find valid data directories for your Jupyter installation. A command along the lines of

ln -s $(sage -sh -c ls -d $SAGE_VENV/share/jupyter/kernels/sagemath) $HOME/.local/
→˓share/jupyter/kernels/sagemath-dev

can then be used to create a symlink to the SageMath kernel description in a location where your own jupyter can find
it.

If you have installed SageMath from source, the alternative command

ln -s $(sage -sh -c ls -d $SAGE_ROOT/venv/share/jupyter/kernels/sagemath) $HOME/.
→˓local/share/jupyter/kernels/sagemath-dev

creates a symlink that will stay current even if you switch to a different Python version later.

To get the full functionality of the SageMath kernel in your global Jupyter installation, the following Notebook Extension
packages also need to be installed (or linked) in the environment from which the Jupyter installation runs.

You can check the presence of some of these packages using the command jupyter nbextension list.

• For the Sage interacts, you will need the package widgetsnbextension installed in the Python environment
of the Jupyter installation. If your Jupyter installation is coming from the system package manager, it is best to
install widgetsnbextension in the same way. Otherwise, install it using pip.

To verify that interacts work correctly, you can evaluate the following code in the notebook:

@interact
def _(k=slider(vmin=-1.0, vmax= 3.0, step_size=0.1, default=0), auto_update=True):
plot([lambda u:u^2-1, lambda u:u+k], (-2,2),

ymin=-1, ymax=3, fill={1:[0]}, fillalpha=0.5).show()

• For 3D graphics using Three.js, by default, internet connectivity is needed, as SageMath’s custom build of the
Javascript package Three.js is retrieved from a content delivery network.

To verify that online 3D graphics with Three.js works correctly, you can evaluate the following code in the notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2)).show()

However, it is possible to configure graphics with Three.js for offline use. In this case, the Three.js installation from
the Sage distribution needs to be made available in the environment of the Jupyter installation. This can be done by
copying or symlinking. The Three.js installation in the environment of the Jupyter installation must exactly match
the version that comes from the Sage distribution. It is not supported to use several Jupyter kernels corresponding
to different versions of the Sage distribution.

To verify that offline 3D graphics with Three.js works correctly, you can evaluate the following code in the notebook:

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2), online=False).show()

• For 3D graphics using jsmol, you will need the package jupyter-jsmol installed in the Python environment
of the Jupyter installation. You can install it using pip. (Alternatively, you can copy or symlink it.)

To verify that jsmol graphics work correctly, you can evaluate the following code in the notebook:

34 Chapter 4. In the cloud

Installation Guide, Release 10.4.beta4

plot3d(lambda u,v:(u^2+v^2)/4-2,(-2,2),(-2,2)).show(viewer="jmol")

Using Jupyter notebook through Visual Studio Code (VS Code) in WSL

If you have installed Sage on Windows using Windows Subsystem for Linux (WSL), it is convenient to use Visual Studio
Code (VS Code) to interact with Sage.

Here are steps to use SageMath in a Jupyter notebook in VS Code:

• Install and run VS Code in Windows.

• Click the “Extension” icon on the left (or press Ctrl + Shift + X) to open a list of extensions. Install the “Remote
- WSL” and “Jupyter” extensions.

• In the command palette (Ctrl + Shift + P), enter “Remote-WSL: New Window”, and hit Enter.

• In the command palette, enter “Create: New Jupyter Notebook”, and hit Enter.

• Click “Select Kernel” on the right (or press Ctrl + Alt + Enter), select SageMath, and hit Enter.

4.6 Troubleshooting

If no binary version is available for your system, you can fallback to the Install from Source Code or use one of the
alternatives proposed at the end ofWelcome to Sage Installation Guide.

If you have any problems building or running Sage, please take a look at the Installation FAQ in the Sage Release Tour
corresponding to the version that you are installing. It may offer version-specific installation help that has become available
after the release was made and is therefore not covered by this manual.

Also please do not hesitate to ask for help in the SageMath forum or the sage-support mailing list at https://groups.google.
com/forum/#!forum/sage-support.

Also note the following. Each separate component of Sage is contained in an SPKG; these are stored in build/pkgs/.
As each one is built, a build log is stored in logs/pkgs/, so you can browse these to find error messages. If an SPKG
fails to build, the whole build process will stop soon after, so check the most recent log files first, or run:

grep -li "^Error" logs/pkgs/*

from the top-level Sage directory to find log files with error messages in them. Send the file config.log as well as
the log file(s) of the packages that have failed to build in their entirety to the sage-support mailing list at https://groups.
google.com/group/sage-support; probably someone there will have some helpful suggestions.

This work is licensed under a Creative Commons Attribution-Share Alike 3.0 License.

4.6. Troubleshooting 35

https://code.visualstudio.com/download
https://wiki.sagemath.org/ReleaseTours
https://ask.sagemath.org/questions/
https://groups.google.com/forum/#!forum/sage-support
https://groups.google.com/forum/#!forum/sage-support
https://groups.google.com/group/sage-support
https://groups.google.com/group/sage-support
http://creativecommons.org/licenses/by-sa/3.0/

Installation Guide, Release 10.4.beta4

36 Chapter 4. In the cloud

INDEX

B
BROWSER, 31

C
CC, 23
CPP, 23
CXX, 23

D
DOT_SAGE, 31

E
environment variable

BROWSER, 31
CC, 23
CFLAGS, 23
CPP, 23
CPPFLAGS, 23
CXX, 23
CXXFLAG64, 24
CXXFLAGS, 23
DOT_SAGE, 31
FC, 23
FCFLAGS, 23
LD, 24
LDFLAG64, 24
LDFLAGS, 23
MAKE, 23, 24
MAKEFLAGS, 24
OPENBLAS_CONFIGURE, 27
PARI_CONFIGURE, 27
PARI_MAKEFLAGS, 27
PATH, 21, 28
SAGE_BUILD_DIR, 25
SAGE_CHECK, 24
SAGE_CHECK_PACKAGES, 24
SAGE_DEBUG, 25
SAGE_DOCBUILD_OPTS, 26
SAGE_FAT_BINARY, 26
SAGE_INSTALL_CCACHE, 25
SAGE_INSTALL_GCC, 24
SAGE_JUPYTER_SERVER, 27

SAGE_JUPYTER_SERVER_TOKEN, 27
SAGE_KEEP_BUILT_SPKGS, 25, 26
SAGE_LIVE_DOC, 26
SAGE_LOCAL, 26
SAGE_MATPLOTLIB_GUI, 27
SAGE_NUM_THREADS, 24
SAGE_PROFILE, 25
SAGE_SERVER, 24
SAGE_SPKG_INSTALL_DOCS, 26
SAGE_STARTUP_FILE, 31
SAGE_SUDO, 26
SAGE_TEST_GLOBAL_ITER, 28
SAGE_TEST_ITER, 28
SAGE_TIMEOUT, 28
SAGE_TIMEOUT_LONG, 28
SAGE_TUNE_PARI, 27
SAGE_USE_CDNS, 26
TMPDIR, 31
V, 23

F
FC, 23

M
MAKE, 23, 24
MAKEFLAGS, 24

P
PATH, 21, 28

S
SAGE_BUILD_DIR, 25
SAGE_CHECK, 24
SAGE_CHECK_PACKAGES, 24
SAGE_DEBUG, 25
SAGE_JUPYTER_SERVER, 27
SAGE_JUPYTER_SERVER_TOKEN, 27
SAGE_KEEP_BUILT_SPKGS, 26
SAGE_LOCAL, 26
SAGE_SERVER, 24
SAGE_STARTUP_FILE, 31
SAGE_SUDO, 26

37

Installation Guide, Release 10.4.beta4

T
TMPDIR, 31

38 Index

	macOS
	Windows
	Linux
	In the cloud
	Linux Package Managers
	Install from Pre-Built Binaries
	Linux
	macOS
	Microsoft Windows

	Install from conda-forge
	Installing all of SageMath from conda (not for development)
	Using conda to provide system packages for the Sage distribution
	Using conda to provide all dependencies for the Sage library

	Install from Source Code
	Prerequisites
	Disk space and memory
	Software prerequisites and recommended packages
	Linux system package installation
	macOS prerequisites
	macOS package installation
	WSL prerequisites
	Ubuntu on Windows Subsystem for Linux (WSL) prerequisite installation
	WSL permission denied error when building packaging package
	WSL post-installation notes

	Other platforms
	Notes on using conda
	Tcl/Tk (and system’s Python)
	Tcl/Tk (and Sage’s own Python)

	Installation steps
	Make targets
	Environment variables
	Standard environment controlling the build process
	Sage-specific environment variables controlling the build process
	Environment variables controlling the documentation build
	Environment variables dealing with specific Sage packages
	Environment variables dealing with doctesting
	Environment variables set within Sage environments

	Installation in a multiuser environment
	Upgrading the system and upgrading Sage
	Caveats when upgrading system packages
	Upgrading Sage using a separate git worktree

	Launching SageMath
	Environment variables
	Using a Jupyter Notebook remotely
	WSL Post-installation steps
	Create a notebook launch script
	Create a shortcut

	Setting up SageMath as a Jupyter kernel in an existing Jupyter notebook or JupyterLab installation
	Using Jupyter notebook through Visual Studio Code (VS Code) in WSL

	Troubleshooting

	Index

